

| Reg. | No. | : | ** | <br>** | •• |  | <br> | ** | <br> | ** |  |  |  |
|------|-----|---|----|--------|----|--|------|----|------|----|--|--|--|
| Name |     |   |    |        |    |  |      |    |      |    |  |  |  |

# Seventh Semester B.Tech. Degree Examination, June 2016 (2008 Scheme)

08.703 : MICROWAVE ENGINEERING (T)

Time: 3 Hours Max. Marks: 100

#### PART-A

## Answer all questions:

- Show that reentrant cavity can support infinite number of frequencies/modes of oscillation.
- 2. Draw the applegate diagram for  $1\frac{3}{4}$  mode in reflex klystron.
- 3. Differentiate between cross-field tube and linear beam tubes
- 4. Write note on slow wave structure.
- A Si npn bipolar transistor have the parameters
   Collector current I<sub>C</sub> = 6 mA
   C.E. current gain factor hfe = 120
   T = 300 k

Cross sectional area  $w_b = 10^{-8} \text{ cm}^2$ .

Find (a) mutual conductance  $g_m$  and (b) diffusion capacitance  $C_{be}^\prime$ .

6. A certain Si micro wave transistor has the following parameters: reactance,  $X_c = 1 \Omega$ ; transit time cutoff frequency, fr = 4 GHz; maximum electric field,  $E_m = 1.6 \times 10^5$  V/cm saturation drift velocity, vs =  $4 \times 10^5$  cm/s. Determine maximum allowable power that transistor can carry.





10

10

10

10

- 7. A certain GaAs MESFET has the parameters channel height, a = 0.1  $\mu$  m, electron concentration, N<sub>2</sub> = 8 ×10<sup>17</sup>/cm<sup>3</sup>; E<sub>r</sub> = 13.10. Calculate pinch off voltage.
- 8. a) List the need for S-parameters at microwave frequencies.
  - b) Draw the S parameter block representation of 2 port network.
- 9. Write note on Corners, bends and twists.
- Write note on protection switching arrangements in microwave communication system. (10×4=40 Marks)

#### PART-B

Answer any 2 questions from each Module.

### Module - I

 Explain in detail velocity modulation and bunching process in 2 cavity klystron system.

12. Explain the working of Reflex Klystron, velocity modulation. Arrive at expressions for power output and efficiency.

13. A TWT operates under the following parameters:

beam voltage  $V_0 = 3$  kV; beam current,  $I_0 = 30$  mA, characteristic impedance of helix;  $Z_0 = 10 \Omega$ ; circuit length, N = 50; frequency, f = 10 GHz. Determine (a) gain parameter C (b) output power gain Ap in dB and (c) all four propagation constants.

#### Module - II

- 14. Explain the working of magnetron oscillators. Why mode strapping is used?
- 15. Derive the Hull cut off voltage equation for cylindrical magnetron.



16. An n-Ge-p-Ga As-n-GaAs HBT at 300 k has the parameters;
Donor density in n-Ge region, N<sub>d</sub> = 5 ×10<sup>18</sup>/cm<sup>3</sup>
Acceptor density in p-Ga As region, N<sub>a</sub> = 6 ×10<sup>16</sup>/cm<sup>3</sup>
Hole life time , Z<sub>p</sub> = 6 ×10<sup>-6</sup> s
Bias voltage at emitter junction, V<sub>E</sub> = 1V
Cross section A = 2 ×10<sup>-2</sup> cm<sup>2</sup>.
Compute (a) built in voltage in the p-GaAs side (b) hole mobility (c) hole diffusion constant (d) minority hole density in n-Ge region.
Module – III
17. Explain the working of Faraday rotation isolator with diagram.

10

10

18. a) Derive S-matrix of 2 hole directional coupler.

7

b) Show that a 3 port circular can function as an isolator.

3

5

5

- 19. With simple microwave laboratory bench set-up
  - a) How microwave frequency is measured?
  - b) How microwave power is measured?

